Need help managing your Energy Transition? Motive Power Sustainability Services >

Insights

Visualized: Global CO2 Emissions Through Time (1950–2022)

The 30 Largest U.S. Hydropower Plants
Global CO2 emissions have grown six-fold since 1950.

But which countries have contributed the most to this growth?

In this streamgraph, created in partnership with the National Public Utilities Council, we answer that question using regional emissions data from Berkeley Earth and Global Carbon Project.

Global CO2 Emissions: The Last 70 Years in Review

In the 1950s, the United States and the countries that later formed the European Union (EU) were the biggest emitters in the world, responsible for over 70% of total annual emissions.

However, this trend swiftly changed as other nations entered the fray.

For instance, China’s economic surge in the 1970s, particularly with the advent of Deng Xiaoping’s new economic strategy in 1978, triggered a notable uptick in the country’s CO2 output. From 1950 to 2000, China witnessed a surge of over 4,500% in emissions, reaching an annual 3.6 billion tonnes by 2000.

Similarly, India, Japan, and the broader Asian region all experienced emission growth exceeding 1,000% between 1950 and 2000.

The 30 Largest U.S. Hydropower Plants
Data note: 1950 was used as a beginning point for the graph due to the lack of available data for many countries prior to that year. 

As illustrated in the table above, the growth in global carbon emissions has slowed since 2000.

With that said, global emissions have still risen from 25 billion tonnes in 2000 to 37 billion in 2022, which is another all-time high. Today, over 40% of emissions come from the U.S. and China, underscoring their pivotal roles in shaping the global emissions landscape.

Where Are We Headed From Here?

The United Nations’ recent Emissions Gap report highlights a concerning reality: the ongoing rate of emissions combined with existing policies steers humanity towards a world that is 3°C warmer than pre-industrial levels. This contrasts starkly with the goals of 1.5–2°C agreed to in 2015.

The Intergovernmental Panel on Climate Change projects that such a degree of warming will potentially result in catastrophic repercussions, from severe changes in weather patterns to rising sea levels, widespread extinctions, and critical disruptions to global food and water systems.

Learn more about how electric utilities and the power sector can lead on the path toward decarbonization here.

Additional Resources

Visualized: Offshore Wind Installations by Region (2023–2033)

Visualized: Offshore Wind Installations by Region (2023–2033)

Visualized: Offshore Wind Installations by Region (2023–2033)  In order to meet the 1.5°C trajectory outlined in the Paris Agreement, the world will need 380 GW of cumulative offshore wind capacity by 2030, expanding to 2,000 GW by 2050. But can it be achieved? The...

read more
Ranked: The Largest Power Outages in the U.S. (2013–2023)

Ranked: The Largest Power Outages in the U.S. (2013–2023)

Ranked: The Largest Power Outages in the U.S. (2013–2023)Power outages—whether due to operational failures, extreme weather, vandalism, or fuel shortages—can have far-reaching impacts on both customers and utility companies. Created in partnership with The National...

read more
Visualized: Countries by Grid Storage Battery Capacity in 2023

Visualized: Countries by Grid Storage Battery Capacity in 2023

Visualized: Countries by Grid Storage Battery Capacity in 2023?According to the International Energy Agency, 1,300 GW of battery storage will be needed by 2030 to support the renewable energy capacity required to meet the 1.5°C global warming target. But how close is...

read more
The National Public Utilities Council (NPUC) is a leading research organization dedicated to driving progress in the decarbonization of power generation. The council fosters collaboration between public utilities, providing a platform for sharing ideas and finding innovative solutions to the challenges of reducing carbon emissions.